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List of recommened Exercises II

Module 2
501. Show that the process B̃t = B(t+ T )−B(T ) is a standard Brownian motion.

(Hint: Check the covariance condition)

502. Let Xt = µdt + σdBt be a be a Brownian motion with drift, where µ, σ 6= 0,
Let X0 = x ∈ (a, b). Use Dynkin’s formula to show that the expected exit time
of Xt from the interval (a, b) is finite.

503. Let Xt be a geometric Brownian motion with

dXt = µXtdt+ σXtdBt, X0 = x ∈ (a, b)

Convince yourself that the expected exit time of Xt from the interval (a, b) is
finite. (Distinguish the case where µ− 1

2
σ2 = 0 and µ− 1

2
σ2 6= 0 ).

504. Characterise all harmonic functions u : Rn \ {0} → R+ of the form u(x) =
h(||x||).

505. Suppose that r > 0, aj > 0, bj, cj ∈ R for j = 1, . . . , n. Assume that
∑n

j=1 cj <
r. Consider the set

D = {(x1, . . . , xn) ∈ Rn :
n∑
j=1

(ajx
2
j + bjxj + cj) < r}.

Let Bt be an n-dimensional Brownian motion starting at (0, . . . , 0) ∈ Rn.
Determine the expected exit time of Bt from D .

506. Let Bt ∈ R2 with B0 = x where r < ||x|| < R, i.e. x is in the two-dimensional
annulus A(r, R). Determine the probability that Bt hits r before R (or, the
probability that Bt exits the annulus from r).

Module 3

The exercises in §6 are quite elementary, nonetheless, they are help-
ful in terms of understanding the material. You can skip all of them
if you are familiar with the heat equation.

601. (warm up) Show that f ∗ g = g ∗ f.
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The following three exercises consider properties of the heat kernel:

602. Let g(t, x) be the fundamental solution to the 1d heat equation, show that
gt = ∆g.

603. Let g(t, x) be the fundamental solution to the 1d heat equation, convince
yourself that

lim
t↘0

g(t, x) =

{
0, x 6= 0,

∞, x = 0.

604. Let g(t, x) be the fundamental solution to the 1d heat equation, fix t > 0,
show that ∫

R
g(t, x)dx = 1.

(Hint: you can use the property of the Gaussian distribution)

(Same problem in higher dimension) Let g(t, x) be the fundamental so-
lution to the 1d heat equation in Rn (F6. Thm. 6.7), fix t > 0, show that∫

Rn

g(t, x)dx = 1.

The following exercises consider properties of the solutions to the
heat equation, we will sum them up in F7.
(Setting for 6.5-6.9) We consider the one-dimensional heat equation

ut(t, x)
∗
= uxx(t, x),

where

0 < t < T, T ∈ (0,∞].a < x < b, a ∈ [−∞,∞), b ∈ (−∞,∞].

605. (Linearity) Show that if u, v both solve (∗), and α, β ∈ R, then αu + βv is
also a solution.

606. (Shift and Scale) Show that if u solves (∗), and α > 0, x0 ∈ R, then
u(α2t, αx− x0) solves (∗) for t ∈ (0, α2T ) and x ∈ (αa+ x0, αb+ x0).

607. (Differential property) Show that if u ∈ C3 and u solves (∗), then ut, ux
also solve (∗).

608. (Integration) If u solves (∗) and v(t, x) =
∫ x
a
u(t, z)dz, x ∈ (a, b), then v also

solves (∗) given that
lim
z→a

ux(t, z) = 0

for each t ∈ (0, T ).

609. (Convolution) If u solves (∗) and f : R→ R is a function, then (u ∗ f)(t, x)
also solves (∗).
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701. (warm up) Show that if f is even and h is odd relative to x0, then f ∗ h is
odd relative to x0.

702. Let u(t, x) be a solution to the heat equation ∂u
∂t
− ∂2u

∂x2
= 0 on {(t, x) : t >

0, x > 0} with u(0, x) = u0(x) for x > 0, and ∂u
∂x

(t, 0) = 0 for t > 0. Show that

u(t, x) =

∫ ∞
0

u0(y)h(t, x, y)dy

for some function h(t, x, y).

703. (Time varying boundary) Check that

u(t, x) =

∫ t

0

Gy(t− s, x, 0)f(s)ds

solves the quarter-plane problem
ut − uxx = 0, t, x > 0,

w(t, 0) = f(t),

w(0, x) = 0,

where G(t, x, y) is the Green’s function for the quarter-plane problem.

704. (Infinite propagation speed) Show that in the Cauchy IVP problem, if the
initial data Φ(x) ≥ 0,Φ(x) 6≡ 0, then

u(t, x) =

∫
R
g(t, x− y)Φ(y)dy > 0

for all x ∈ R, t > 0. (Hint: Strong maximum principle, use minimum instead)

705. (HE with positive rate of diffusion) Show that

g (t, x) =
1√
2kt

ϕ(
x√
2kt

)

solves gt = kgxx.

801. Verify that ρ(t, x) = 1√
2πt

exp(−x2

2t
), the probability density function of a stan-

dard BM at time t, solves ρt = 1
2
ρxx.

802. Let u(t, x) be the probability density function of a stochastic process at time
t and solves ut = uxx. What is this process?

803. (warm up) Write down L∗ for the following 1d Ito diffusions:

(a) dXt = dBt,

(b) dXt = µdt+ σdBt,

(c) dXt = µXtdt+ σdBt,

(d) dXt = µXtdt+ σXtdBt.
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804. Show that L∗ is the adjoint of L with respect to the quadratic inner product:
let g, h be smooth and vanish at infinity (along with their derivatives), then∫

R
h(x)(Lg)(x)dx =

∫
R
g(x)(L∗h)(x)dx.

805. Convince your self that the steady-state distribution we find in F8 is indeed
the limiting distribution of the OU process. (Hint: lifting T to infinity)

806. (BM has no steady-state distribution) Write down the KFE for a stan-
dard BM, and

(a) show that the stationary solution is of the form ρ∞(x) = ax+ b,
(b) look at the boundary condition at ∞ and conclude ρ∞(x) = b,
(c) conclude that such a distribution cannot be normalised.

(This implies that (as in Kohn section 1), ρ∞(x) = 0. This agrees with our
knowledge of the Gaussian hump with always-growing width and shrinking
height)

807. (BM in the unit interval) Now we look at something similar to 10.4. Consi-
der the KFE of a 1d Brownian motion in the interval (0, 1) with the boundary
condition

∂ρ∞
∂x
|x=0 =

∂ρ∞
∂x
|x=1 = 0.

Show that the steady-state distribution exists and is uniform.
(Remark. This homogeneous Neumann boundary condition here is what we
call the ’reflecting boundary’. Namely the process is reflected when it hits the
boundary. We will not go too deeply in that and you probably have seen it
somewhere else. Other types of boundary conditions for KFE are ’absorbing
bdr’, ’periodic bdr’, ’sticky bdr’...)

808. (Moments of BM again) Fix t > 0 and let βk(t) := E[Bk
t ]. Recall that

(a) E[Xn] =
∫
R x

nf(x)dx where f is the probability density function,
(b) ρ(t, x) decays sufficiently fast at infinity.

Use the KFE of the standard BM to show that

βk(t) =
1

2
k(k − 1)

∫ t

0

βk−2(s)ds.

809. (Generalised OU) Let a > 0, V : R→ R such that∫
R
e−V (x)dx <∞.

Find the limiting density function for Xt that solves

dXt = −aV ′(Xt)dt+
√

2adBt.

(Remark. why is it not needed that we specify the initial value of Connect it
with what you know about Markov processes.)
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